

MAXIMIZING THE RESERVOIR ACCESS WITH COMPLETION OPTIMIZATION AND EFFECTIVENESS

Luciano Fucello, NCS Multistage Fabio Chiarandini, Gaffney & Cline

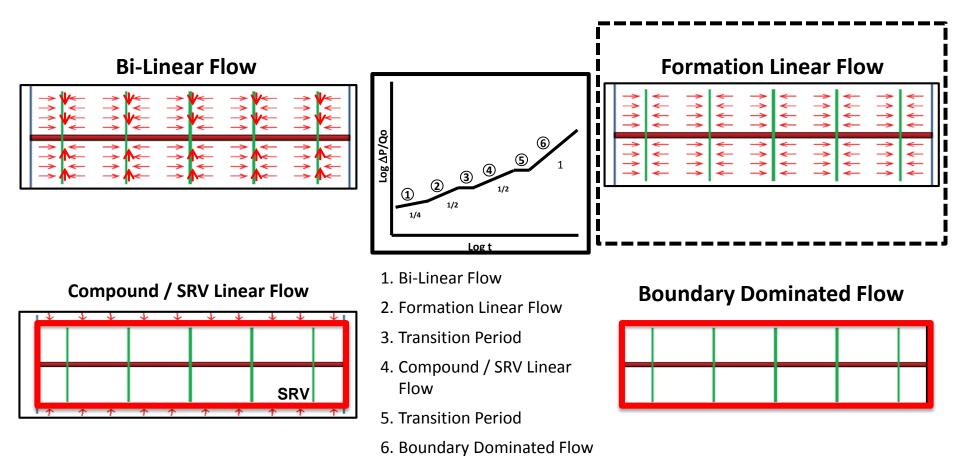
AGENDA:

- Completion effectiveness
- Intro Case Study
- Completion
- Production analysis
- Completion costs
- Conclusions

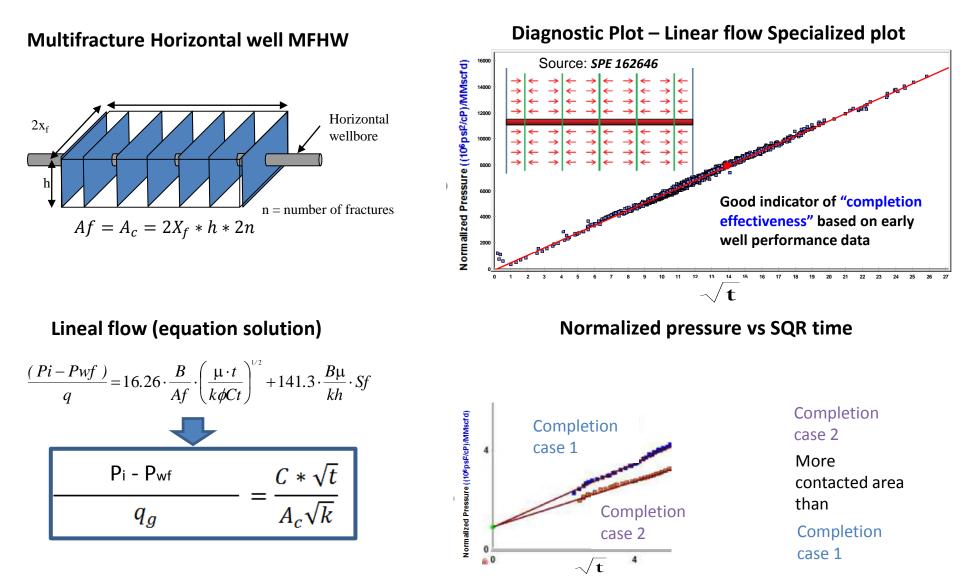
Completion Effectiveness

- Challenges to analyze unconventional Shale reservoirs
- Multifracture Horizontal well MFHW Flow regimes
- Rate Transient Analysis fundamentals
- Diagnostic Plots Linear flow Specialized plot indicator of completion effectiveness
- SPE references

Challenges to analyze unconventional shale reservoirs

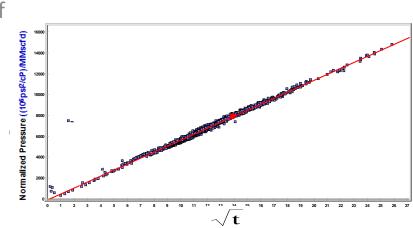

- Flow regimens stay in transient flow for a long period of time
- Difficulties to estimate the ultimate recovery, XF, Permeability, Fracture conductivity and drainage area
- DCA assumptions used for conventional reservoirs not valid
 - Existence of boundary dominated flow
 - Constant flowing bottom-hole pressure

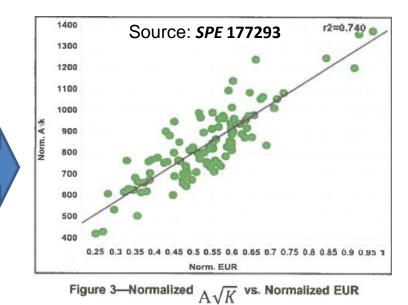
• **Evaluation of** unconventional Shale reservoirs requires rate, pressure and other reservoir parameters to determine the flow capacity in linear flow.



Flow regimes in a MFHW Schematic (SPE 162647)

Rate Transient Analysis fundamentals




Diagnostic Plot – Linear flow Specialized plot Normalized pressure vs SQR time

- Can be used as "Completion Effectiveness" tool if limited variation in reservoir properties
- Good indicator of "Completion Effectiveness" based on early well performance data
- Plot identifies transient lineal flow and quantifies total connected fracture area and square root of SRV permeability.

 Use of linear flow tendency over predict EUR.....however, Good correlation between Norm.AQRT vs Norm.EUR

References

- SPE 162646: Importance of the Transition Period to Compound Linear Flow in Unconventional Reservoirs
- SPE 162647: What's Positive about Negative Intercepts
- SPE 177293: Production Analysis using Rate Transient Analysis
- URTeC 2688694: Timely Understanding Of Unconventional Reserves through Rate Transient Analysis

MAXIMIZING THE RESERVOIR ACCESS WITH COMPLETION OPTIMIZATION: CASE STUDY VACA MUERTA

Luciano Fucello, NCS Multistage Fabio Chiarandini, Gaffney & Cline

INTRODUCTION

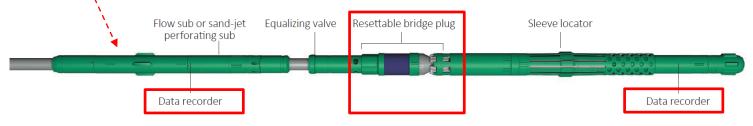
2 wells in the same PAD

 Well A => Pinpoint
 Well B => Plug & Perf

Both wells targeting Vaca Muerta

Comparison of completion methodology, RTA analysis and costs

COMPLETION: *Methodology*

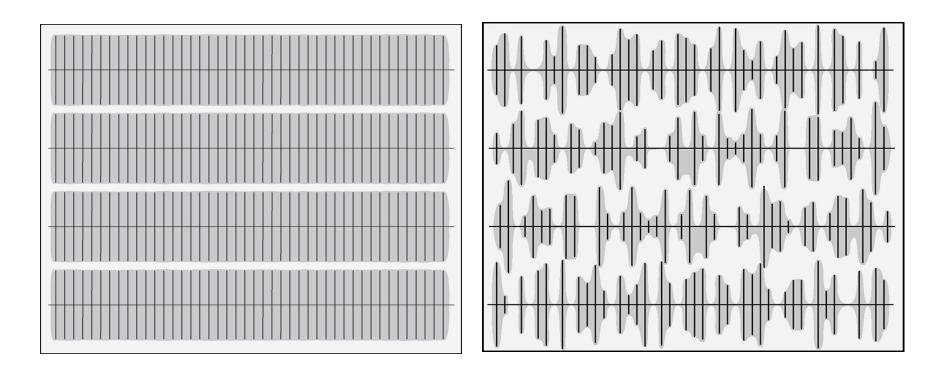

WELL A - PINPOINT

- 60 coiled tubing shifted sleeves installed - RECLOSABLE
 - o 58 stimulated
- Average spacing ~24.9m between sleeves
- Isolation inside casing with resettable bridge plug on CT BHA
- Annular frac
- No frac plug drillout

Pinpoint frac isolation tool (see schematic)

WELL B - PLUG & PERF

- 18 frac stages / 54 entry points
- 3 perforation clusters per frac stage
 o Isolated by bridge plugs
- 10 perforations per cluster / 0.5 m
- Average spacing ~24.5m between clusters
- Required frac plug drillout



PINPOINT COMPLETION TECHNOLOGY IN THE VACA MUERTA SHALE: A CASE STUDY

COMPLETION: *Methodology*

 \bigcirc

PINPOINT COMPLETION TECHNOLOGY IN THE VACA MUERA SHALE: A CASE STUDY

COMPLETION: Frac Design

Similar treatments

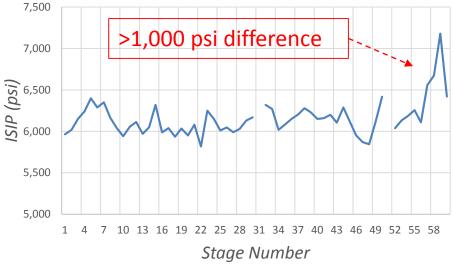
Some differences

Hybrid fluid design

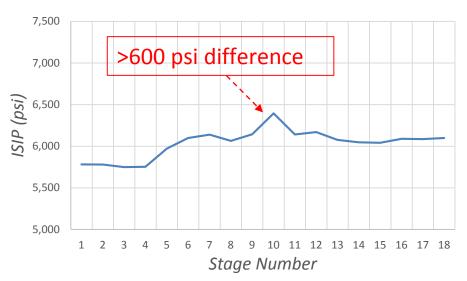
Increasing proppant size 100 mesh to 20/40

Fluid volumes and distribution of fluid type

- Injection Rate
- Proppant size distribution
- Lateral length


Average per entry point

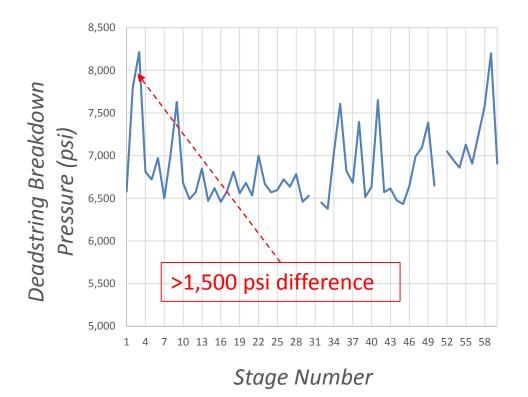
Well	WELL A	WELL B
Entry Point Spacing (m)	24.9	24.5
Slickwater (bbls)	1,636	-24% 1,172
Gel (bbls)	×	20
Crosslink (bbls)	915	1,210
Total Fluid (bbls)	2,551	2,403
100 mesh (lbs)	16,144	12,315
40/70 sand (lbs)	45,121	47,220
40/80 Sinterlite (lbs)	40,937	
30/50 sand (lbs)		35,739
30/60 Sinterlite (lbs)	26,418	35,433
20/40 Wanli (lbs)	29,028	+35% 29,980
Total (lbs)	157,648	160,687
Injection Rate (bpm)	23.3	17.3



COMPLETION: Instantaneous Shut-In Pressure

WELL A

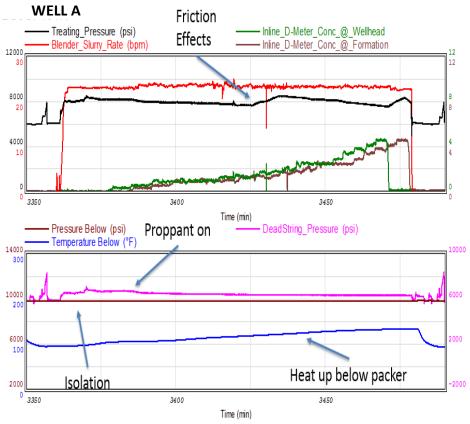
- Individual entry point ISIPs (BH data)
- Show end of job pressure variability



WELL B

- Only ISIP data available (surface)
- Shows some variability even with "averaging" effect of 3 clusters

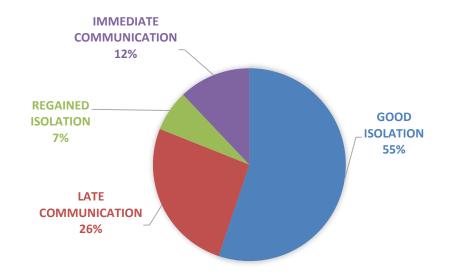
COMPLETION: *Breakdown Pressure* (*BH gauge*)



WELL A Formation Breakdown Pressure

- Individual entry point breakdown pressures
- Show early job pressure variability
- Deadstring data (BH)
- 58 of 60 zones treated (~96.7%) on WELL A
- NO DATA ON EFFICIENCY ON WELL B

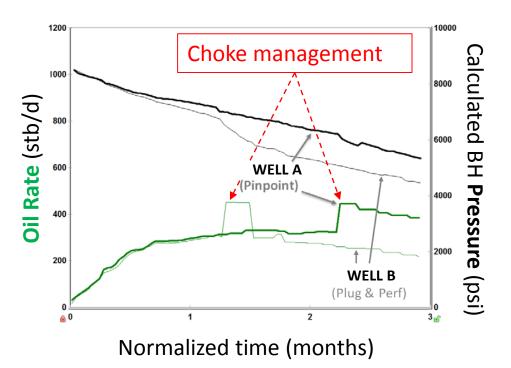
COMPLETION: Bottom Hole Gauge Data Evaluation



Only available on WELL A

- Near wellbore restriction
 - Indication of fracture complexity
 - Relatively moderate and declines during the treatments
- Proppant distribution
 - o Interpreted as being good
 - Minimal proppant bridging
- Real time net pressure indication
 - o CT deadstring
 - o Avoid screen out

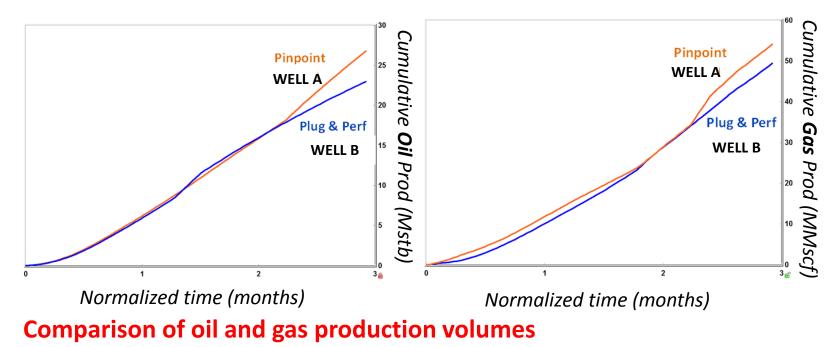
COMPLETION: Bottom Hole Gauge Data Evaluation


Communication between stages - Only available on WELL A

Zonal pressure isolation evaluation

o Reasonable with most communication being slight in nature

PRODUCTION EVALUATION: Basic Comparison

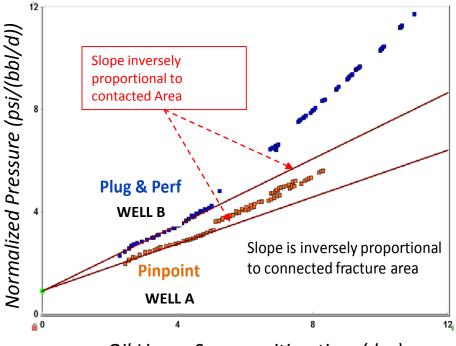


Comparison of production rate and calculated bottomhole flowing pressure

- Similar lateral length (1500 m)
- Both wells navigate in the same section
- Both wells exhibit choke change at different times
- Pressures measured at surface (BH Calc)
- No tubing installed

PRODUCTION ANALYSIS: Basic Comparison

Shows similar profiles with the WELL A performing slightly better



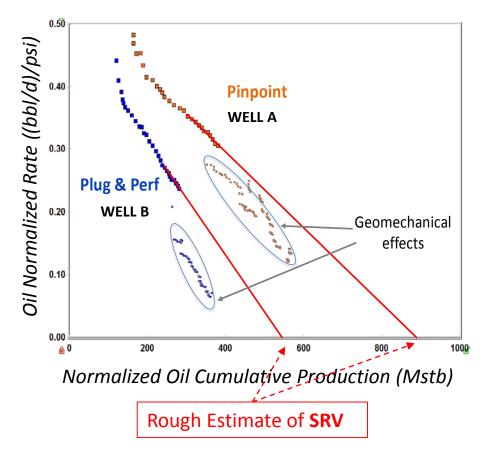
PRODUCTION EVALUATION: Rate Transient Analysis

Linear flow specialized plot analysis

- Slope is inversely proportional to connected fracture area (Avk)
- Geomechanical effects with choke changes

WELL A (pinpoint) 40% more connected area

Oil Linear Superposition time (d_{1/2})



PRODUCTION EVALUATION: Rate Transient Analysis

Flowing material balance (FMB)

- Quantifying the contacted Original Oil in Place (OOIP)
- Extrapolation of this plot yields a rough estimate of SRV
- Geomechanical effects with choke changes

WELL A (pinpoint) 60% more SRV

COMPLETION COST: Comparison

WELL A	WELL A
(Pinpoint)	(Plug&Perf)
90.8%	100%

Comparison of bundled completion costs

- Include only those expenditures directly associated with the specific completion methodology employed
- The cost of proppant and other variable costs not associated specifically with the style of completion were not included in the totals

Savings of approximately 9% for the comparable Pinpoint costs vs the Plug&Perf completion costs

CONCLUSIONS

- Cost and production benefits were realized by the application of the pinpoint completion method.
- RTA analysis of well performance suggests a greater stimulated reservoir volume (fracture area) is produced by the pinpoint completion method, and that a larger hydrocarbon volume is contacted by the completion as a result.
- Reclosable sleeves opens up a wide range of comletions design, including refracturing and shuttle frac (non secuential)

QUESTIONS

