

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Argentine Section Buenos Aries, Argentina 16 March 2016

Bridging the Gap Between Drilling and Completions Challenges and Solutions in Horizontal Wells

Mary Van Domelen, PE Engineering Advisor

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

My Background

- BS Chemical Engineering, University of Oklahoma
- 11 years Halliburton Research Center
- 12 years international
 - Leiden, The Netherlands
 - Cairo, Egypt
 - Copenhagen, Denmark
- 7 years with operating companies
 - Maersk Oil, Danish Operations
 - Chesapeake Energy, Fracturing Services
 - Continental Resources, Bakken

Presentation Format

- Define the challenge
- Evolution of technologies
- Establish today's baseline
- What does the future hold
- Conclusions

The Challenge

Economic development of unconventional reservoirs necessitated the development of leading edge horizontal drilling and well completion techniques.

Photo courtesy of US Energy Information Association

The question for today

Can we drill longer wells than we can effectively complete?

Photo courtesy of Continental Resources

Photo courtesy of MT ACTION Photography

Scope: Stimulated horizontal wells

Horizontal wells...

2 miles = 3.2 km 3 miles = 4.8 km

- Are getting longer and longer
- Require more stimulation stages
- Must be optimized; not just efficient and economical
- Environmental concerns can not be ignored

When, and where, was the first horizontal well with multi-stage fracturing treatments?

Multi-Stage PSI Completions (1988) Perforate-Stimulate-Isolate

Key drivers:

1) Production more important than efficiency

- Ensure each frac as productive as possible
- Allow selective testing of individual zones

Locator Tubing

The Dan Field Today

Reference: Danish Energy Agency "Oil and Gas Production in Denmark" (2013)

When, and where, was the first HZ well to use a ball shifted sleeves completion?

Ball shifted sleeves Open Hole Multi-Stage (OHMS)

Joanne Field (1994)

The Challenges

- Marginal development
- Variable permeability and fractures
- Supply of stimulation materials

The Solutions

- 1st ball drop sleeves completion
- 4 wells, 10 stages each
- Stimulation completed in 8 to 24 hours per well
- Two stimulation vessels, simultaneous operations

Stimulating a "3-mile lateral"

Halfdan Field (2000)

The Challenges

- Thin, flat reservoir requiring stimulation in order to produce at economical rates
- Lateral sections up to 6,000 m
- > 50% of laterals outside of coiled tubing reach

Reference SPE 71322, 78220, 78318 and SPE 108531

Halfdan "Hybrid Completion"

- Inner 2,500 m: Coiled Tubing (CT) shifted sleeves
 - Stages are fracture stimulated
 - 1 week to complete 14-16 stages
- Outer 3,500 m: Controlled Acid Jetting (CAJ)
 - Single, long interval is matrix acidized
 - 1,500 m³ 15% HCl acid
 - Typically completed in 12 hours

20

The Halfdan Field Today

Reference SPE 71322, 78220, 78318. and SPE 108531

Unlocking reserves through horizontal drilling and completion technologies

US Energy Information Administration: "Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States" (June 13, 2013)

Accelerating the learning curve

By 2010, 90% of the wells in the Bakken were horizontal with multi-stage fracs and the operators were preparing to ramp up in the Eagle Ford

Bridging the gap between drilling and completions

What are today's challenges?

- Time and money
- Laterals are getting longer
- Availability of materials, especially water
- Public perception and environmental regulations
- Selecting the optimum completion for a given area

Brent Oil Spot Price (\$/bbl)

Drilling and Completion Costs CAPEX per EUR

Source: Oil & Gas Financial Journal, November 2015 (Rystad Energy NAS Well Data and Analysis)

Brief Introduction to the Bakken

Tight Oil Breakeven Prices 2014 "High Grading" Example

Source: WoodMackenzie, Barclays Research (November 2014)

What will happen in 2016?

Drilled Uncompleted Wells

- 3,600 in U.S. (~ 1 mil BOPD)*
- 998 in Bakken at year end 2015

Important questions:

- Where is the opportunity in this challenge?
- How do we prepare for the recovery when it happens?

Drilling vs. Completion Efficiencies

Source: US Energy Information Administration Bakken Rig Efficiencies Report August 2015

SPE DISTINGUISHED LECTURER^{**}

Bakken Completion Trends

Enhanced Completions

Source: Continental Resources November 2015 Investor Presentation

Life Cycle of Unconventional Plays

Source: HIS Bakken Playbook (May 2015)

Water Requirements – Horizontal Wells Drilling vs. Completions

- Significantly more water is used during completion compared to drilling; however,
- The amount is a small percentage of all industrial water usage

Water Recycling: Why or why not?

Considerations:

- Availability of fresh water
- Legislation

Feasibility

Economics

- Quality of produced water
- Water transfer options
- Central storage

Source: USGS Article 10.1002/2015, June 2015

Remediating for entrained oil and for solids

Produced Water Recycling Facility

Reference SPEPOS Panel Session on Water Management for Hydraulic Fracturing, March 2015

Components

- Produced water storage
- Flocculation to remove solids
- Treatment to remove organics
- Underground water transfer pipelines

Economic Benefits

- Low OPEX ~ \$0.30-\$0.50/bbl
- Facilities generate revenue
- Minimizes salt water disposal
- 30% reduction in fresh water consumption

50,000 bbl/day Recycling Capacity and 1,500,000 bbl Useable Storage

10,000 bbl/day Recycling Capacity and 500,000 bbl Useable Storage

Pushing the limits of lateral length

Challenge:

- Economic full field development
- Conventional development
 - Full township (6 miles x 6 miles)
 - 18 units (1 mile x 2 miles)
 - Each unit HBP (held by production)

Solution:

Extended lateral development:

- Infill using 14 4-, 6- and 8-well pads
- 18 fewer pads and 32 less wells
- 36% reduction in footprint

	2-mile development	3-mile development	Potential Benefit
Lateral length	10,000 ft	15,000 ft	~ Neutral
Wells required	141	109	- 32 wells
Number of pads	64	46	- 18 pads
Total footprint	280 acres	179 acres	- 101 acres

Challenge:

- Accessing "offshore reserves"
- Surface constraints

Solution:

- Directional drilling
- Extended lateral developments

Chasing the drilling rig

- Steering the lateral
- Where to perforate
- Stage isolation
 - Plug and Perf
 - Ball shifted sleeves
 - -CT shifted sleeves
- Post frac cleanout

Challenge: Steering the lateral

- Geo-steering
- Mud logging
- Cuttings analysis
- Gas analysis
- Biostratigraphy
- Logging while drilling
- Thru-bit logging
- Paleo-environmental analysis

Is this what your lateral looks like?

Challenge: Steering the Lateral

Challenge: Quantifying rock properties

Is your rock brittle or ductile?

	Complex Systems	Complex Planar w/ Fissures	Complex Planar	Planar w/ Fissures	Planar
Fracture Geometry		T	-	++++++	~~~``
Stress Anisotropy	LOW			\rightarrow	HIGH
Brittleness	8 BRITTLE 0.18	~	YM ←	<u>.</u>	2 DUCTILE 0.35
Completion Focus	STRESS INDUCED COMPLEXITY	RESERVOIR DIVERSION	RESERVOIR DIVERSION	RESERVOIR DIVERSION	FRACTURE
Reservoirs	Barnett Woodford	Marcellus Eagle Ford Gas	Eagle Ford Oil Bakken	Haynesville	Montney

Challenge: Where to perforate

- Reservoir quality with
- Completion quality

Various approaches

- Thru-bit quad-combo logs
- Projecting pilot hole data via resistivity or density logs
- Specific mechanical energy (SME) from drilling parameters

Image courtesy of Halliburton Energy Services

Challenge: Stage Isolation

Images courtesy of Halliburton Energy Services

Challenge: Stage Isolation

Mechanical systems

- Plug-and-perf
- Ball and sleeves
- Coiled tubing activated

Dynamic systems

- Jet assisted
- Proppant plugs

Images courtesy of Halliburton Energy Services

Plug-and-Perf Completions

P'n'P; along with "zipper fracturing" reduced completion times significantly

Zipper Fracturing

Challenge: Frac plug mill-out

Solutions:

- Larger coiled tubing
- Large ID frac plugs
- Dissolvable frac plugs

Ball and Sleeves Systems

Historically: open hole with single ports

Today: fully cemented with multiple ports

Ball and Sleeves Systems

Maximum number of stages	Open Hole	Cemented
Single entry sleeve systems	50-55	35-40
Multi-port systems, 3-5 ports/stage	48-54	20-25

- Exact number of stages possible is dependent upon
 - Formation characteristics
 - Wellbore construction
 - Stimulation treatment parameters
- Balls are made of various materials
 - Generally in 1/8" size increments
 - Degradable balls are available

Images courtesy of Schlumberger

Coiled Tubing Fracturing

Sleeves are run in the liner, then shifted with coiled tubing during stimulation operations

Coiled Tubing Fracturing

Images courtesy of NCS Energy Services

Full circle in horizontal well completion technologies

- Austin Chalk, Texas
- North Slope, Alaska

Technology sharing

- Collaborate
 - All disciplines: geosciences, drilling, completions, production
 - With service providers and other operators
- Accelerate learning curve
 - Learn from both successes and failures
 - Think outside the box when looking for analogs
- Be prepared
 - There will be a shortage of skilled people
 - Keep focus on being effective not just efficient

In conclusion:

Does completion technology lag behind drilling technology?

- Drilling envelope is pushed first
- Completion technology is a fast follower

Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation Visit SPE.org/dl

mary.vandomelen@clr.com

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

