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Outline of today’s presentation…

• Purpose
• Unconventional reservoirs
• Fluids and proppants
• Conductivity and clean-up
• Proppant transport
• Modeling 
• Hydraulic fracturing for reservoir 

management
• Conclusions
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WHY should you be concerned?

• Unconventional reservoirs (UCR’s) are 
just that - unconventional

• UCR’s are increasing forming our 
reserve/resource base around the world

• Extrapolation of conventional techniques 
and concepts to UCR’s is risky
– Combination of considerations
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Conventional vs. Unconventional

“Unconventional 
resources…accumulations 
that are pervasive 
throughout a large 
area…not significantly 
affected by hydrodynamic 
influences…require 
specialized extraction 
technology…”

SPE-PRMS, 2007 Holditch, 2001
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Today’s presentation focuses on…

• Shale gas (is a “shale” a “shale”?)
– Micro/nano-Darcy permeability (10-6 – 10-9)
– High quartz or carbonate content (typically less 

than 20-30% clays)
– High TOC?

• Shale (“liquids rich”) oil
• Tight gas

– What is “tight”?
– Micro-Darcy permeability
– Fluvial, laterally discontinuous bodies; blanket 

sands
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Fluid Systems
• “Slickwater”

– Minimal polymer loading
– Polyacrylamide friction reducers
– 1 – 10 cp fluid system
– Carrying capacity reduced

• Lighter loaded systems
• Must minimize damage due to the initial low 

permeability
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Lightweight/Smaller Proppants

• Use of lower viscosity fluids = difficult to 
carry high proppant concentrations

• Velocity is the transport mechanism, not 
viscosity

• Function of fracture width, Reynolds 
numbers, densities of proppants and 
fluids, diameters of proppants

• 100 mesh, 30/50, and 40/70 sizes 
common
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Conductivity and Clean-up
• Fracture conductivity is still critical!!
• Pack width determined by

– Proppant concentration
– Closure stress 
– Filter-cake and embedment

• Pack permeability determined by
– Proppant size and strength
– Packing and porosity
– Regained permeability and gel clean-up
– Non-Darcy and multiphase flow
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Cleanup and Load Recovery is Affected by 
Gravity, Viscous, and Capillary Forces

Flow upward, co-current 
at high rates, counter-
current at low rates, 
hindered by gravity.

Higher Sw, poor load 
recovery, and low gas 
perm.

Flow downward, co-
current at any rate, 
assisted by gravity.
Lower Sw, better recovery 
and gas perm.

Possible water coning around 
well causing further damage?
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Traditional Prop Transport

Frac height
(assumed to be
constant)

Fracture half-length

Suspended proppant slurry
(uniform concentration)

Clean pad fluid  to 
create w=3-6xd

Settled sand bank
11



Particle Transport

(From Patankar, 2002 and Kern, Perkins, and Wyant, 1959)
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Example 1 – Bank Placement

Courtesy of Stimlab

0:08 sec 0:35 sec

0:58 sec 1:26 sec
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Example 2 – Erosion of Bank

Courtesy of Stimlab

0:01 sec 0:10 sec

0:38 sec 0:50 sec
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Modeling

• Remember that fracturing is always the 
path of least resistance

• De-coupling; vertical resistance (layers; 
laminations)

• Breakdown considerations in horizontal 
wells
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Containment by Shear Decoupling

Coupled System Decoupled System
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Laboratory experiments – laminated 
block before hydraulic fracturing

(28 cm X 28 cm X 48 cm)

Lyons sandstone

Lyons sandstone

Lyons sandstone

15.8 ppg cement

16.2 ppg cement

15.8 ppg cement

Unbonded interface

Polyurethane base 
adhesive bond

Epoxy

After hydraulic fracturing –
notice the complexity for 

this “simple” system
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Near-Well Stresses In 
Rotated 3D Space

Vertical far-field Stress

Max Horizontal far-field Stress

Min Horizontal far-field Stress
Tangential Near-Well Stress

Axial Stress

Radial Stress
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Tangential Stress Distribution 
Around a Horizontal Well

S1=6000

S1=6000
S2=6000
S3=4200

IncS1=0
AzSH=70

Azi=70
Dev=90

The wellbore acts as
a tunnel arch:
Vertical stress is
transmitted to the
sides of the hole
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Breakdown Example
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Reservoir Management/Development

• Reservoir characterization
• Well spacing

– 10-20 acres (4-8 hectares)
• Stage/cluster spacing
• Need to maximize contact area

– Low permeability
– Minimal drainage area

• Re-treatments
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Reservoir Characterization

• Diagnostic 
injection tests
– Leak-off 

behavior
– Presence of 

natural fractures
– Reservoir 

pressure
– Permeability
– Process zone 

stresses
G-Function Analysis
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C.I. = 0.1 psi/ft
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DFIT Procedure

1
2

3

4

5

1. Low rate to fill well and break down (t0)
2. Hold constant max rate for 3-5 minutes
3. Step down to 75% then 50% of max 

rate, 10-15 seconds for each step
4. Shut in (for ISIP) and isolate gauge (tp)
5. Record falloff as long as practical (t>tp)

Barree, et al., 2014



Reservoir Management/Development

• Reservoir characterization
• Well spacing

– 10-20 acres (4-8 hectares)
• Stage/cluster spacing
• Need to maximize contact area

– Low permeability
– Minimal drainage area

• Re-treatments
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10-ac spacing 3D view of 
wellbore penetrating fluvial 
bodies

Body types penetrated as 
a function of well-spacing 
densities

Modified from Anderson, 2004 26



“Layer-cake” Reservoir
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“Layer-cake” Model Results
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Detailed Reservoir, Well A
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From Cuba, et al, 2013



Well A - Rock Properties
Porosity                                                                      Permeability (md)

Poisson’s ratio                                                           Young’s modulus (psi)
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Detailed Reservoir, Well A

From Cuba, et al, 2013



Reservoir Management/Development

• Reservoir characterization
• Well spacing

– 10-20 acres (4-8 hectares)
• Stage/cluster spacing
• Need to maximize contact area

– Low permeability
– Minimal drainage area

• Re-treatments
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Cluster Spacing Optimization

Perf
Cluster
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Stress Shadowing of Clusters
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Reservoir Management/Development

• Reservoir characterization
• Well spacing

– 10-20 acres (4-8 hectares)
• Stage/cluster spacing
• Need to maximize contact area

– Low permeability
– Minimal drainage area

• Re-treatments
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36Piceance Basin, Western Colorado, USA



“S-Curve” Development
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From www.csug.ca, 2010



Pad Development

38Courtesy of 
PETROBAKKEN



Centralized 
fracturing 
equipment 

location

Multiple well pads 
(16 wells per pad)

Large diameter, 
welded surface 

lines
39From Miskimins, 2009



Reservoir Management/Development

• Reservoir characterization
• Well spacing

– 10-20 acres (4-8 hectares)
• Stage/cluster spacing
• Need to maximize contact area

– Low permeability
– Minimal drainage area

• Re-treatments
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Reorientation/Retreatment??

Courtesy Devon Energy 41



Conclusions
• Hydraulic fracturing for UCR’s requires 

combinations of considerations
• UCR’s represent a wide variety of 

reservoir types and designs must address 
these differences
– Materials,  complexity, reservoir management

• The learning curve can be shortened by 
studying other successful applications
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Thank you for your time!
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