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The Industry Challenge

" Orders of magnitude reductions in perm
require orders of magnitude increase in
reservoir contact

= Efficiency key to economic success

Conventional Reservoirs 4 &
Small volumes that are
easy to develop

Unconventional
Large volumes
difficult to
develop
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Shales are unconventional reservoirs
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Schematic geology of natural gas resources
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Shale Gas Introduction

What are they?

— Organic-rich shale

— Source rocks

— Adsorbed and free gas
— Very low permeability

Common traits of gas shale reservoirs
— Abundant gas (20 to 400 BCF/mi?)
— Large developments (economies of scale)
— Large and numerous hydraulic stimulations
— Long well life (60-year reserves common)
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Trap, Reservoir & Source Rock

Conventional Unconventional

Trap
Reservoir
Solirce
Source
Hydrocarbon leaves source and settles Rock is too tight to let go of Hydrocarbon
in the reservoir because it cannot so source rock acts as the trap
pass the trap and the Reservoir
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Heterogeneous Rock at Fine Scale

Matrix

Kerogen

| HV | HFW |[det /mode WD
1.00 k\V 6.40 pm|TLD | None 4.1 mm

Fig. 3. 2-D FIB/SEM image showing porosity and kerogen within shale. Black depicts pore, dark gray is kerogen, light
gray is matrix (clay and silica).
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Permeability

Shale in Perspective
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10

ical Properties for Shales
The Consequence of Laminations
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Unconventional Shale Gas Reservoirs

= Hydraulic fracture containment is often either unknown or
perceived as uncertain.

= Traditional stress modeling in shale gas reservoirs has
lead to inefficient fracturing or unexpected height growth.

= However by considering anisotropic rock properties......
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Heterogeneity
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A heterogeneous material is one consisting of
dissimilar or diverse constituents
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Anisotropy

Anisotropy iIs defined as the variation of a property
with the direction in which it is measured.

Isotropic Anisotropic Anisotropic
— T
A
S
OL_{
Bt Evaluate using core, logs and seismic
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What is a Transversely Isotropic medium?

Same property in the 3 principal directions of space

Property is the same in 2 principal directions:
TIV same property in horizontal plane
TIH same property in vertical plane

Property varies in 3 directions
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Stress Modeling of Shales

Jaeger and Cook — Fundamentals of Rock Mechanics (1979)

This is the case of a sedimentary rock with z-axis perpendicular to the bedding,
and the increase of the number of elastic constants from two for the isotropic
case to five is formidable. There is no great difficulty in handling many
mathematical problems involving such materials, cf. Hearmon (1961), Savin

(1961); the difficulty for practical purposes is in obtaining and using realistic

values of the elastic constants. Prm—

g,—abP, = —(JV — a’Pp) Isotropic

1-v

_E, W Transverse
g, —ab (JV - a'Pp) Isotropic
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Traditional Stress Modeling: Isotropy

" O vertical

‘Luilllul'

MM

Stress Profile

>

Isotropy assumes that:

Horizontal = Vertical
All conventional sonic tools !!

U

g,—0, = —(av - a‘p)+tectonics

P
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Stress Profiles in Anisotropic Rock

O vertical i i

Where:

= E =Young’'s Modulus Vertical

= v = Poisson’s Ratio Vertical

= E'=Young's Modulus Horizontal
= v’ = Poisson’s Ratio Horizontal

Laminated Shale which is the
reservoir & source rock

Eh ov .
0,0, = (0' -0 )+tecton|cs
Ev 1-uh
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Vertically Anisotropic Formation - impact on Frac Height

| sotropic Stress Anisotropic Stress Sic SC”r
E 1% £
Vv h v
——x(o, —aP )+ aP X x(o, —ab)+ab,
(I—V) ( g r) ' EV (I_VH) !

Leads to more accurate mechanical
properties in laminated shales

Horizontal Young's Modulus Vertical Young's Modulus Horizontal Poisson's Ratio Vertical Poisson's Ratio
(psi) (psi)

AVEFEQE Median STD A‘JEFGHE Median STD AVEFEQE Median STD AveragE Median STD
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Comparison of Isotropic and Anisotropic Models

QR Mineralo Gradien}s
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Impact of Anisotropic Stress Profile

Isotropic Stress Profile Fracture Geometry Anisotropic Stress Profile Fracture Geometry
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Hydraulic fracture contained Hydraulic fracture grows
within the organic shale above the organic shale

Best barriers for organic shales are conventional, high clay volume inorganic shales

Fractures that grow out of zone will result in poor production regardless of the Reservoir
Quality
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Well Depth (TVD) (ft)

Impact of Stress model on hydraulic fracture

Isotropic Vs Anisotropic assumption
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Anisotropy and Fracture Containment

Isotropic Blue (v)

g,—aP, = ﬁ(av —aPp)

Anisotropic Red (E;, Ey, v}, V)

Eh VV
E, 1-v,

g, —ab; = (UV - aPp)

Leads to more accurate mechanical properties in
laminated formations
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Completions Optimized with
Integrated Geomechanical Approac

Integrated geomechanical and petrophysical analysis of ¢
helps operator increase production by 500 Mct/d

Challenga

Detarmine most effective
stimulation trestment and
avoid previous costy mistakes.

Solution
Apply formation eveluation
by TarraTek™® Geomechanics

Laboratory Center of Excellence.

Resuls

Achieved better stimulation
treatments and mare economic
completions, with an increass
in production of 500 Mcfid.

04-Jul-11

Reservoir evaluation dismapts fractured completion trd
Fracture growth oot of the zone, potentially into watel
multiple completion opportunities for an operator in

most efective stimulation treatment for the completil
formation evaluation would need to be muoltifaceted g
and petrophysical properties determination with dow)
goals were threefold: examine petrophysical data to df
geonechanical properties of the formation through a
the petrophysical evaluation, the comparizon betweer|
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Cluster analysis witl 2 ic mechsaical pregichio

Integrated geomechanical and petrophysical analysis of core data
helps operator increase production by 500 Mcf/d

o mew ey grado, paf
an

| =3 LT m [ (=
Center of Excellenos, performed an ewmbzation of this Barneit Shale reservoir. Analysis g_%
o
avoiding laminated infermls, focused on moee siliceons Layess with kow-closore stress.
With the ansbysis providing a fll undestanding of the reservuir, the operator ineomporatad JP——————
core anabysis o provide s complete characterization of the resepmir and its potendial, é

Anisotropic stress model dalivars fracture success
Schiumberger Data & Conselting Serviees, through its TerrsTek Geamachanies Laboratory P
gave: the aperafor 3 detailed evalnation of this formstion and 8 completion methodology
designed for success. The complelicn methodolegy, designed for perforation placement
To avoid fracturing dewn inbe the water 2one below the shale, analysis suppested perforsting e -
in intervals io promote upward growth,

o
a tapered proppant mesh throughoot the coarse of the hypdraudie fractore trestmengs. Key H "o
components of the evahstion methodolopy inchided the ose of BEC8* elemental capionre E‘;
speciroscogy sende, FMI* fullbore formaticn microimager, ELANPI=® soltware, Sonic am
Seanner® sooustic scanning platform, Platform Express® wireline logging tool, and TerraTek

Processing mechanieal properties with an antsotropie steess mode] is eritical to prediciing
and mitigating proppant entry issuees, as well as predicting fractore geometry. & thorough
knowledge of thie stress gradient and contrasis i vital to determining the optimomm way o
hypdrantically fractare the reservoir. Detailed fuid sensitivity tosts lead to the sslection

of the best fracturing Mokls

Completa analysis leads to solid completions.

Combining all of these analyses with a perforation straiegy helped the client avoid comple-
tion fafures common bn this reservodr, ke Fractore growth oot of the ane, potentially into
a water zone. The 30 anisoémpie processing revesled thal apparent feacture barriers in
carbonste and high-clay intervals did not exdst. Borface-passive microseismic monitoring
of the hydraulic fractore treatment later confirmed this: The relevance of processing
perEmechanical data with an anisotropis siress model proved imalonbée to the dewlopment
of the ressrwir.

e | e
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Poaccmd
Frecmm bariar

Where the simpiified Isofropic stress
model incomrectly indicsted 8 barner,
the anizotropic stress mode! revesied
that there was nome:

Annlysis of core data resulied in better placement for perforation closiers, optimized well
trajectory for horizental Interals, snid enhanced prodoction. This well, compleled nsing
TerraTek Geomechanics Laboratory Center of Excellence analysis, showed an sverage
production inerease of S00 Mefd.

Contect your local Schlumberger mpresentatve to leam mare.

Intelligent performance www.slh.com/des
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Hydraulic Fracturing Direction

Hydraulic fracture direction

As the frac propagates, it always tries to grow in the plane
perpendicular to the minimum stress direction in the
formation (the preferred fracture plane, PFP).

When the geometry and formation
are favourable*, like this, it
succeeds very simply.

(*well axis parallel to a principal
stress; isotropic unfractured rock;
good perforations.)
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Hydraulic Fracturing Direction

Low stress anisotropy
Lower seismic anisotropy
Wide fracture fairway
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Fracture Geometry Information from Horizontal Image Logs

Variable Induced Fractures Infers Variable Stress

Transverse Fractures Only: No Fractures: Long & Trans Fractures:

Oy == Oy High o Low o’ & o, ~ T,

No Fractures




SPE-90051 (HW)

Fisher ef a/, SPE 90051, 2004
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Extremely Complex
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SPE-90051
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Acoustic Fracture Dimension (ft)

3 Month Cumulative Gas

32

SPE-90051
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StimMAP* LIVE - Quantifying

Contact Volume
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Effective Stimulated Volume T
(ESV) density based algorithm -

A Tool to make informed decisions
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Hydraulic fracture mapping for evaluation

Microseismic Measurements

with prop-placement model
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Fracturing Fluid Selection

Slickwater Fluids

— More ft4/$
— Wider Fracture “Fairways”

Geled fluids

— Frac Initiation

04-Jul-11
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Fracture Treatments — Increase Surface Area & Flow

The result has been an accelerating increase
in production from the Barnett field

gas production wells drilled
»s billion cubic meters thousands

ETY

40

e rtical well production |:|vertica| well count

33 O rizontal well production I Horizontal well count
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Source: ElA

Howard Gruenspecht, Global Shale Gas Initiative, August 23, 2010
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Hydraulic Fractures In Horizontal Wellbores

Which direction to drill?
Where to land?
Fracture height growth?
Fracture network width?
Fracture conductivity?

Wellbore azimuth 0
Longitudinal fractur,

04-Jul-11

AN

Transverse Aplication:
Place Multiple Fracute:

.Qllrfnr‘p/

: Wellbore azimuth 90°
Reservoir Transverse fractures
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Maximum horizontal stress
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Schiumherger
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Induced Stress due to a Horizontal Hole in g, Direction

Drilling Process can induce Tensile Stress
Potential Initiation of Tensile Fractures

Longitudinal Fracture

Borehole

Induced Stress Field

In-Situ Stress Field
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Factors Affecting Fracture Geometry

Horizontal Hoop Stress, psi

|

The effect of induced stress concentration
created by removing a cylinder of supporting
rock is known as “Hoop Stress”.

2|

3
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3,500

3,000

k2,500
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- 41,500

1,000

Min; 284.07¢

Weijer 1994 — Fracture
initiate longitudinal when
OH drilled L to Omax, then is
reoriented to transverse .
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Microseismic Data and Fracture Orientation
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SPE 110562
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SPE 110562

Stage 1 Stage 4
omax avg = .77 omax avg = .74 omax avg = .65
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Fracture geometry modeling
Differences between pseudo 3-D and planar 3-D

N
S

Actual footprint

“Cells”

(=
S

Fracture 1 N

height /\

—~{ L\

Fracture half-length

Propagation and fluid flow are 1-D

Assumes fracture length >> height (plane-strain

assumption)

Interpolated fracture front

1
/

Source R N

A
elements Y

}
N

Ax

Propagation and fluid flow are 2-D
No assumption/restriction on the aspect ratio
(length vs height)

Only constraint — fracture stays within one plane
(no bending or turning)

Planar 3-D models are more accurate in layered reservoirs than pseudo 3-D, which will
maximize benefit from petrophysical and geomechanical data
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Unconventional Reservoir Simulator (Mangrove®)

What is it?

— Multi-stage stimulation design and evaluation software for conventional and

unconventional markets

— Integrated in the overall oil field services’ multi-disciplinary solutions;

...petrophysics, G&G, geomechanics, reservoir engineering

How does it work?
— Implemented as a Plug-in for Petrel

What is the value?

m Differentiate through technical solution rooted in reservoir
characterization (measurements and interpretation),
enabling reservoir centric stimulation design for specific
environments

m Reorient for the global shift to unconventional reservoirs

04-Jul-11
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Multi-staging Advisors

=Tight Gas Sandstone & Pilot Shale (Vertical)

100 separate stacked sands over 3000 ft gross
Differential depletion
Starting point AutoFRAC (Denver)

Shale (Laterals)

Laterals through heterogeneous rock
Ultra low permeability

Naturally Fractured

Completion challenges
— Consistent model
— Tedious process (2 days — 2 weeks)

[Improved Efficiency, Consistency & Knowledge Dissemination ] ‘ ‘ ‘
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Simple facts About Reservoir Productivity

Good RQ + Good CQ = Good well
Good RQ + Bad CQ = Bad well
Bad RQ + Good CQ = Bad well

Bad RQ + Bad CQ = Bad well

Reservoir productivity (on a well to well basis) depends strongly on reservoir quality and
completion quality.

Reservoir quality can be measured and predicted (via logs) with high degree of
confidence. However, it cannot be changed.

Completion quality is more difficult to predict, but is the property that potentially can be
modified from bad to good.

Reservoir quality and completion quality change laterally and vertically as dictated by
the large-scale reservoir heterogeneity.

Schiumberger
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HF-NF Interaction (Crossing Criterion)

HF
- S e <7/ HF propagating
along NF
NF

Arrest/ NF dilation

\ slippage
NF staying

J— 4 — _ ,/: closed

/ /

Crossing \
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Example of UFM Results with micro-seismic data
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Integrating Reservoir & Completion Quality

Examine Reservoir and
Completion Quality.

Recommend stages
with optimal
properties. Variable
number and lengths.

Recommend specific
perforation location

il

Spectroscopy
Volumes

I

Effective
Porosity

Shale Stress

Poisson’s

33% increase in 3 month average cumulative BOE on
new wells. Save $300k in frac costs

New wells used Reservoir Quality and Completion
Quality to optimize completions.

“““ | A "“""“l"““"‘ ey

3 Month BOE

50000

40000

30000 -

20000 -

10000 -

Pre Optimization (6 Wells) Post Optimization (3 Wells)

Combined logs and core measurements for the reservoir and completion quality assessment.
Reservoir Quality technology routine: Triple Combo-Spectroscopy (PEX-ECS/ EcoScope), Di-Electric Scanner, NMR
Completion Quality technology routine: Borehole Images (FMI, RAB, LWD Density), Sonic Scanner/Mangrove*
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Conclusion & Summary

m Unconventional Reservoirs require special consideration related to
the heterogeneity.

m Conventional Isotropic stress models can lead to erroneous
evaluations.

m Geomechanical Models are becoming more important in the
process of the Reservoir completion.

m |t's not just about technology, it's about integrating appropriate
technology.
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Questions or
Comments?

When the energy source
is unconventional,

S0 are we.

Unconventional Gas

Schiumherger



